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Coloring random graphs and maximizing local diversity
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We study a variation of the graph coloring problem on random graphs of finite average connectivity. Given
the number of colors, we aim to maximize the number of different colors at neighboring vertices (i.e., one edge
distance) of any vertex. Two efficient algorithms, belief propagation and Walksat, are adapted to carry out this
task. We present experimental results based on two types of random graphs for different system sizes and
identify the critical value of the connectivity for the algorithms to find a perfect solution. The problem and the
suggested algorithms have practical relevance since various applications, such as distributed storage, can be

mapped onto this problem.
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The graph coloring problem [1,2] has received a signifi-
cant level of attention. Much of this interest stems from the
fact many real-world optimization problems can be repre-
sented as coloring problems. In the original formulation,
given g colors, one aims at finding a coloring solution such
that any two connected vertices have different colors. In the
current work, the aim is to maximize the number of colors at
one edge distance of any vertex.

One application can be found in the field of logistics,
where each vertex represents a storage unit. The problem is
then to find how to distribute the different types of goods
such that, at each site, any type can be retrieved either from
the given unit or from directly adjacent storage units. The
problem that got us interested in this problem is that of dis-
tributed data storage where files are divided into a number of
segments, which are then distributed over the graph repre-
senting the network. Nodes requesting a particular file collect
the required number of file segments from neighboring nodes
to retrieve the original information. Distributed storage is
used in many real world applications such as OceanStore [3].

It should be emphasized that typical properties of the
main problem we are interested in should be taken into ac-
count when a color assignment algorithm is considered: (i)
The problem is characterized by a finite number (of the order
of the graph connectivity) of different file segments. (ii) An
adaptive assignment of colors may be required as the topol-
ogy continuously changes due to the emergence and disap-
pearance of nodes. (iii) The networks considered are of mod-
erate size, 10>—10° nodes.

Although this problem has not yet been shown to be NP-
complete (NP denotes nondeterministic polynomial), it
seems, nonetheless, intractable for a large system size. Since
no research has been carried out on this specific problem, no
dedicated tools exist either [4]. However, as we report in this
paper, existing optimization algorithms can be adapted quite
easily to solve this and similar problems. In particular, we
investigate two well established techniques: belief propaga-
tion (BP) and a variant Walksat (WSAT) for this purpose.

In this paper, we show how BP and Walksat can be used
to solve this particular problem. For a given number of col-
ors g we identify the transition points in terms of the critical
connectivity \! above which the algorithms typically find a
perfect coloring. We also calculate the average minimum
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measure of unsatisfaction E4(\) as a function of the connec-
tivity . The latter is defined as E9(N\)=2"_ | EY(\) where for
each vertex i with local connectivity \;

EJ(\) =min(g,\; + 1) — ¢ (1)

is the difference between the number of actually available
colors at that node ¢g;, and the maximal number of available
colors [at the vertex and its nearest neighbors min(g,\;+1)].
In this paper, we only consider graphs with local connectivi-
ties \;=¢—1, such that EY(\)=¢—g;, just counts the number
of missing colors. One should note that, contrary to the origi-
nal graph coloring problem, the problem of finding a color-
ing for our problem actually becomes easier with increasing
connectivity.

The full analysis of the model in the infinite system size is
an issue that is currently being investigated. The main goal
of this paper is to introduce the problem, and to investigate
the performance of the two algorithms on realistic system
sizes:

Belief propagation: BP, also called the sum-product algo-
rithm, relies on iterative message passing to provide near
optimal performance at low computational cost [6,7]. It is
based on conditional probabilistic messages passed from the
immediate neighborhood to find the most probable assign-
ment of states to variables given constraints. In our problem,
the constraints correspond to the retrieval of min(g,\;+1)
colors per vertex, from the vertex itself and its first order
neighbors.

These constraints can be represented by clusters of verti-
ces on a graph as in Fig. 1(a), where A, B}, B,, C;;, and C,
correspond to the vertices, while Z, and Zp, are check vari-
ables corresponding to the constraints. Checks variables re-
late to the unsatisfaction of given color assignments for the
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FIG. 1. (a) A graph representing the successive local constraints.
(b) A bi-partite graph representation.
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corresponding node and its direct neighbors. For instance,
for the node A with g4 available colors (8=20 for computa-
tional reasons)

P(Zy|A{B}) = e7Pla=1n), 2)

The graph can be transformed into a bipartite graph,
shown in Fig. 1(b), which separates the vertices from the
checks. The following update rules can be easily obtained by
naively adapting the original BP rules [6,7]. Thus the mes-
sages from a check to a vertex are given by

P(Zy|A) = {2} P(Zy|A{B}PUBINZs}1Zc D),
B

i

=2 P(ZJABY]] P(BZs {2 ). (3)
B; i
while the message from a vertex to a check is given by
PAl{Zs)) = as [T P(Z5)4). )
Zp}

Finally, the node pseudoposterior is given by

P(AZ,{Zp)) = aP(ZA|A){H} P(Z;|A), (5)
Zp,

where a4 and « are normalization coefficients. Note that the
factorization in Eq. (3) is a relatively crude approximation
even in the large system limit, as the {B;} nodes are corre-
lated. To deal with this properly, a more advanced analysis
using a cluster expansion [8] is currently being undertaken.
Nevertheless, as we will see, these approximations work re-
markably well.

If convergence of the BP algorithm is reached, the colors
of vertices whose (pseudo)posterior is greater than a pre-
defined threshold set at 0.9 in our experiments can be fixed.
If no such high posterior exists then the vertex with the high-
est posterior value has its color fixed. Then, the update rules
are reiterated and the decimation process repeated until a
global coloring is reached.

A major drawback of the BP algorithm is that conver-
gence is not guaranteed for graphs with loops due to frag-
mentation of the solution space. Random initialization results
in the emergence of competing local solutions and conflict-
ing messages, leading to nonconvergence.

Time averaging [9] is a way of getting around the prob-
lem by carrying out the decimation and color fixing process
according to the average posterior (over time, i.e., a number
of iterations) instead of the instantaneous posterior. In the
case of nonconvergence, this method decimates the vertex
with the strongest average coloring probability over all com-
peting solutions and thus reduces the fluctuations due to the
competition. After several trials, a time window of 30 itera-
tions was chosen for the data presented here. We have opted
for time-averaged BP due to its improved performance and
robustness.

Walksat: Walksat is a local search algorithm, originally
designed to maximize the number of satisfiable clauses in
problems that assume a conjunctive normal form [10]. Al-
though Walksat may seem to be suboptimal at first sight,
studies have shown it to be a powerful tool [11]. Many vari-
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ants of the original algorithm exist [10,12,13]. In this study,
we have adapted the variant referred to as SKC; it uses the
notion of variable breakcount, defined as the number of
clauses that are currently satisfied, but would become unsat-
isfied if the variable assignment were to be changed. The
SKC variable selection is as follows:

(i) If there are variables with breakcount equal to 0, ran-
domly select one such variable.

(ii) Otherwise, with probability p randomly select a vari-
able; with probability 1—p randomly select a variable with
minimal breakcount.

(iii) Flip the selected variable.

(iv) Repeat until all clauses are satisfied or until the max-

iterations is reached.
In our problem, the breakcount of a variable is given by the
number of vertices for which the change of assignment
would decrease ¢;. Henceforth, the breakcount depends on
the replacement color. In step (i) of the SKC procedure, the
selected replacement color is the one which leads to a break-
count equal to 0 (if more than one, choose randomly). In the
step (iii), a replacement color is selected at random. In our
first few attempts, this adaptation of the Walksat algorithm
showed mixed results, which were up to 50% worse than
those obtained with BP. We therefore adapted another local
search algorithm [14] related to Walksat. This algorithm is
also iterative and based on a mixture of gradient and “noisy”
descent. At each iteration, one of these two descents is cho-
sen at random, with some probability. Similarly to the Walk-
sat algorithm, this step is repeated until all checks are satis-
fied, or the maximal number of iterations is reached.

The gradient descent is operated by the GSAT algorithm
[15], which changes at each an iteration the variable assign-
ment that leads to the greatest decrease in the number of
unsatisfied clauses. In our problem, changes will correspond
to the greatest decrease in unsatisfaction as defined in (i).
“Noisy” moves in the original algorithm [14] are replaced
here by the SKC heuristic. The resulting algorithm is a mix-
ture between SKC and GSAT, which is parametrized by a
probability p,,, set to 0.5. Our experiments show that the
combined algorithm performs significantly better than SKC
with no added cost.

If not all checks are satisfied at the maximal number of
iterations (the choice of which is discussed in the next sec-
tion) the GSAT algorithm is iterated until a local minimum is
reached. The combined algorithm, referred to here as Walk-
sat, shows similar results to those obtained using BP both in
terms of unsatisfaction E4(\) and the number of perfect col-
oring solutions found.

To study the performance of both algorithms we carried
out extensive computer simulations. Experiments were car-
ried out for g=4 colors for two system sizes (n) of 100 and
1000 vertices. The two types of graphs studied have an av-
erage connectivity A:

(i) (cut) Poissonian: where vertices have local connec-
tivities \; given by

Ni=Npin+20n =9 = L+ 2 ga (6)

where z)_,,; is randomly drawn from a Poisson distribution
with parameter A—g+1.
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(i1) Linear: where vertices have local connectivities
N =[N+ 2 (7)

where [\] is the largest integer smaller or equal to A, and
Zy-=1 with probability N—|[\] and 0 otherwise.

We study the most interesting range of average connectivities
from A=3 to A=5 with a step of 0.1. For each A\, 1000 graphs
of each type were randomly generated and then colored by
both the BP and Walksat algorithms.

Graph characteristics: Both graphs and constraints are
born from the original problem we have set to solve, namely
distributed storage. We point out two observations that may
help in getting insight into the characteristics of the problem
and solutions found by the algorithms: (i) The number of
checks is always equal to the number of vertices as each
vertex is associated with a check, that connects it to all ver-
tices at one edge distance. This check is obeyed when the
vertex can retrieve all possible colors from vertices at one
edge distance. (ii) Edges are undirected: if vertex “B” is con-
nected to the check of “A,” then vertex “A” is also connected
to the check of “B.” Hence there are always % short loops,
which correspond to the number of edges, in the belief net-
work even in the large system limit. When the connectivity
value A\ increases, the number of loops increases as well, but
it also becomes easier to get a lower value for the average
unsatisfaction. Therefore it is unclear whether the influence
of the presence of loops on the performance of the (current)
BP algorithm will increase or decrease with A.

Walksat performance: In the Walksat algorithm, the maxi-
mal number of iterations nbit is an important parameter. A
greater value increases performance, but also computational
cost. Unfortunately, the relation between performance and
cost is not linear and it is therefore difficult to estimate the
optimal number of iterations. In order to understand this re-
lation, we carried out several simulations with different val-
ues of nbit for the two systems sizes and all connectivity
values.

Figure 2 show the results obtained for a system size
n=100 and a range of limits on the number of iterations. One
notices that improvements in terms of unsatisfaction and per-
fect coloring are negligible for A =3.8 and A =4.1 in linear
and Poissonian graphs, respectively. In these regions, no per-
fect solutions are found and the Walksat algorithm stops
when the maximum number of iterations is reached and re-
turns a suboptimal solution, even for larger nbit values. Per-
fect coloring solutions exist and are found for A=3.8 and
A=4.1 in linear and Poissonian graphs, respectively. How-
ever, a larger number of vertices will also require an expo-
nentially larger number of iterations to achieve the same per-
formance.

To compare the performance of the Walksat and BP algo-
rithms, we take the results achieved by Walksat for roughly
the same computational time to the one used by BP. This
means nbit=500 K and nbit=12M iterations for systems
sizes of 100 and 1000 vertices, respectively. We also modify
the Walksat algorithm described previously such that the un-
satisfaction returned is the lowest value over all examined
color assignments and not the one corresponding to the near-
est local minimum. While it is desirable to compare the per-

PHYSICAL REVIEW E 74, 057101 (2006)

(%)

Perfect col.

) 35 T 75

Y

IS

Unsat. {%)
Perfect col. (%)

FIG. 2. Walksat performance on linear and Poissonian graphs
(n=100) for nbit from 125 K to 120 M iterations and connectivity
\. (a) Unsatisfaction measure, linear. (b) Percentage of perfect col-
oring, linear. (c) Unsatisfaction measure, Poissonian. (d) Percentage
of perfect coloring, Poissonian.

formance also against the optimal result, e.g., where the
number of Walksat iterations is unbounded, this limit is un-
known analytically for this problem as of yet (it is currently
being studied using refined techniques and will be presented
elsewhere). The number of Walksat iterations used here is
both computationally feasible and produces close to optimal
results, as presented in Fig. 2.

BP vs Walksat—A comparison. Figure 3 shows that for
small graphs (100 nodes), and far away from the critical
connectivity, BP is generally outperformed by the Walksat
algorithm. We believe this is partially due to the presence of
small loops, as discussed earlier, and the use of generalized
BP [16] is currently being investigated to improve perfor-
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FIG. 3. Comparison of BP and Walksat for linear (a,b) and Pois-
sonian (c,d) graphs; (a) and (c) present the unsatisfaction measure,
(b) and (d) are the percentage of perfect coloring.
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mance; nevertheless, one should note that even the approxi-
mative BP algorithm works surprisingly well considering the
crude approximation made in Eq. (3). In addition, while
Walksat clearly outperforms BP for 100 nodes systems, this
is definitely not the case for 1000 nodes systems close to the
critical connectivity, where results obtained by BP are better
both in terms of the percentage of perfectly colored cases and
in terms of the minimal average unsatisfaction, both for lin-
ear and Poissonian graphs. For increasing system sizes and
given computing resources BP is likely to outperform Walk-
sat in the relevant regions.

In summary: we study a variation of graph coloring on
random graphs with finite average connectivity, aimed at
maximizing the number of colors accessible by a vertex
within one edge distance. The problem is of practical rel-
evance, especially in the area of distributed storage. The BP
and Walksat algorithms were adapted to perform the task. We
present experimental results for two types of random graphs
and system sizes, and identify critical connectivity values
above which the algorithms find a perfect solution. For
q=4 colors, the critical connectivities found are around 4 and
4.4 for linear and Poissonian graphs, respectively. In prin-
ciple, the methods presented are applicable for random
graphs of any connectivity profile and number of colors, and
can provide very good solutions (not necessarily perfect) for
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single instances of intermediate ¢ values and variable con-
nectivity.

We have found that both algorithms give qualitatively
very similar results with similar computing costs. The rela-
tive efficiency of both algorithms, in terms of the quality of
the obtained solutions and computing time, does, however,
depend on the combination of parameters and graph charac-
teristics. A more detailed analysis will be the subject of a
separate study, as will be the thermodynamic phase diagram
for this model. The current message passing algorithm will
be improved by using an exact cluster expansion in the large
system limit (i.e., focusing on stars and edges as our funda-
mental clusters instead of stars and nodes), combined with
generalized BP. This approach is expected to remove the
influence of short loops and therefore improve the perfor-
mance of the algorithm, especially at low connectivity val-
ues. Unfortunately, this will be of little use for the distributed
storage application due to the computational cost involved as
it requires messages of length ¢, in contrast to BP messages
that are of length ¢ (the computational costs grow as ¢** and
g" per bit, respectively). For the distributed storage applica-
tion, characterized by intermediate ¢ values and an adaptive
assignment of colors (as the topology continuously changes)
this may prove impractical.
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